Explicit Difference Schemes for Wave Propagation and Impact Problems
نویسنده
چکیده
Explicit finite difference and finite element schemes are constructed to solve wave propagation, shock, and impact problems. The schemes rely on exponential functions and the solution of linearised Rlemann problems in order to reduce the effects of numerical dispersion and diffusion. The relationship of the new schemes to existing explicit schemes is analysed and numerical results and comparisons are presented for several examples.
منابع مشابه
Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems
Explicit Runge–Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge–Kutta schemes available in literature. Furthermore, they have a small principal error n...
متن کاملA case study of flood dynamic wave simulation in natural waterways using numerical solution of unsteady flows
Flood routing has many applications in engineering projects and helps designers in understanding the flood flow characteristics in river flows. Floods are taken unsteady flows that vary by time and location. Equations governing unsteady flows in waterways are continuity and momentum equations which in case of one-dimensional flow the Saint-Venant hypothesis is considered. Dynamic wave model as ...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملWater hammer simulation by explicit central finite difference methods in staggered grids
Four explicit finite difference schemes, including Lax-Friedrichs, Nessyahu-Tadmor, Lax-Wendroff and Lax-Wendroff with a nonlinear filter are applied to solve water hammer equations. The schemes solve the equations in a reservoir-pipe-valve with an instantaneous and gradual closure of the valve boundary. The computational results are compared with those of the method of characteristics (MOC), a...
متن کاملComparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation
This paper analyzes a number of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, and elastic waves. The spatial operators analyzed include compact schemes, noncompact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-mar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016